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1. Introduction

The anomalous dimensions of Wilson twist operators [1] are relevant perturbative quan-

tities which appear in various phenomenological problems in the study of QCD strong

interactions. A typical example is the operator product expansion analysis of deep inelas-

tic scattering [2]. In that context, the close relation between parton splitting functions

and anomalous dimensions suggests various physical insights valid in special kinematical

limits. In particular, the behavior of anomalous dimensions for large Lorentz spin M at

fixed twist L probes the quasi-elastic limit where the Bjorken variable is close to unity

xBj → 1. In this regime the most singular part of the splitting functions is due to soft

gluon emission and is universal. For the leading twist 2 operators, these remarks translate

into the following well-known prediction for the anomalous dimension γ

γ = 2Γcusp(g) log M + O(M0), (1.1)
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where g2 = λ
16 π2 and λ = Nc g

2
YM is the ’t Hooft planar coupling λ. The non trivial function

Γcusp(g) is the so-called cusp anomalous dimension [3].

The logarithmic scaling in eq. (1.1) is quite general and applies in particular to the su-

perconformal finite N = 4 SYM theory where integrability [4] and AdS/CFT duality [5 – 7]

can be exploited to gain (much) additional information. This approach is clearly interest-

ing in itself due to the theoretical relevance of the N = 4 SYM theory. Besides, one can

also argue that large xBj physics can be related to the QCD one, being mostly related to

the shared gauge sector. A recent example of this strategy is the analysis of a generalized

Gribov-Lipatov reciprocity [8 – 10] for various twist-2 and twist-3 Wilson operators [11 – 15].

The current knowledge of Γcusp(g) in N = 4 SYM is quite complete. It can be extracted

from the anomalous dimensions of sl(2) operators. The weak-coupling perturbative series

can be computed at all-orders by a rather simple expansion of the so-called BES equa-

tion [16]. The result is in agreement with the most advanced available field theoretical

computations [17]. The problem of computing the strong coupling expansion of the BES

equation is more difficult and after intense activity [18] has been impressively solved in the

remarkable paper [19]. Again, there is full agreement with the two-loop analysis of the

dual superstring theory on AdS5 × S5 [20 – 23].

The BES equation is derived by considering operators with an arbitrary finite twist

L and taking the large spin limit M → ∞. If the twist increases with the spin M then

one expects a richer landscape of scaling behaviors. A simple one-loop illustration of this

general statement can be found in [24]. It is shown that when M ≫ L, one must still

distinguish between two quite different regimes characterized by extreme values of the

gauge theory parameter ξ defined as

ξ =
1

L
log

M

L
. (1.2)

In particular, the minimal anomalous dimension has the following leading contributions

γ(g,M) =





8 g2 logM, ξ ≫ 1,

8 g2 1

L
log2 M

L
, ξ ≪ 1.

(1.3)

The first case is covered by the BES equation. The second case with the characteristic

double logarithm enhancement is beyond its reach. The appearance of these two regimes

is in quite similarity with the semiclassical string calculation of [21] as we shell discuss in

a moment.

In [25], Freyhult, Rej and Staudacher (FRS) proposed to analyze the logarithmic be-

havior of anomalous dimensions in the following limit

L,M → ∞, j =
L

log M
= fixed. (1.4)

In this limit FRS prove that a logarithmic scaling is observed once more. The prefactor

now depends on both g and j

γ(g, j) = f(g, j) log M + O(M0), (1.5)

– 2 –
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where f(g, j) is a generalization of the cusp anomalous dimension

f(g, 0) ≡ f(g) = 2Γcusp(g). (1.6)

An integral equation analogous to the BES equation, but valid for all g and j, has been

derived in [25]. Of course, a great deal of interesting results can be obtained by applying

to the FRS equation the methods which have been already sharpened in the case j = 0.

In particular, this means that the FRS equation can be considered in the following two

opposite limits.

1. The fully weak limit. This is simply g, j → 0. There seems to be no ambiguity in this

double limit and it is convenient to first expand f(g, j) around j = 0

f(g, j) =
∑

n≥0

fn(g) jn, (1.7)

and then expand each fn(g) around g = 0

fn(g) =
∑

k≥0

Fn,k g
2 k. (1.8)

The coefficients Fn,k have been computed in [25] where their explicit expression can

be found as well as a discussion of various features, like for instance transcendentality

uniformity.

2. The Alday-Maldacena limit. The Alday-Maldacena (AM) limit is a strong coupling

limit defined by the general condition g → ∞ with j ≪ g [26]. The scaling function

f(g, j) is described in this limit by the thermodynamical Bethe Ansatz equations of

the non linear O(6) σ-model [27]. As explained in the beautiful analysis of [28] it is

necessary to consider separately the two situations where j ≪ m or j ≫ m where m

is the dynamically generated mass gap [29]

m =
23/4 π1/4

Γ(5/4)
g1/4 e−π g (1 + O(1/g)) . (1.9)

In particular, the case j ≪ m ≪ g predicts the large g behavior of the functions

fn(g) and can be summarized by the expansion

f(g, j) = −j +m2

[
j

m
+
π2

24

(
j

m

)3

+ · · ·
]
, (1.10)

which has been indeed recovered in the FRS equation in [28]. For additional numerical

and analytical confirmations of the expansion eq. (1.10) see [30, 31]. Additional terms

in the above series which represent the σ-model energy density can be found in [32].

The other limit m≪ j ≪ g is also very interesting and is discussed in details in [28].

The above two limits are similar to those already considered for the cusp anomalous

dimension since the parameter j is used as a perturbative book-keeping device. This

suggests to consider another new limit.

– 3 –
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3. The large-j limit. A quite different and very interesting limit is obtained taking first

the weak coupling perturbative expansion of f(g, j) around g = 0

f(g, j) =
∑

n≥0

f (n)(j) g2 n. (1.11)

The functions f (n)(j) can be expanded around j = 0 recovering the fully weak regime.

On the other hand, one can look for the large j behavior of f (n)(j). This large-j limit

turns out to be non trivial. Looking back at the analysis of [24], we see that for large

M and fixed j we simply have

ξ =
1

j
. (1.12)

The result eq. (1.3) can be nicely rewritten in a uniform way as

f (1)(j ≪ 1) = 8, f (1)(j ≫ 1) =
8

j
. (1.13)

These simple relations immediately suggest that the large-j limit of the FRS equation

is closely connected to the string theory calculations described first in [21] and later

expanded in [33]. In particular, the string perturbative calculations admit a BMN-like

expansion which is captured by the FRS equation in the large-j limit. The comparison

can be done at arbitrary coupling, thus going beyond eq. (1.11). This is important if one

is interested in detecting universal dressing effects. In this paper, we exploit the fact that

the BMN-like expansion contains some terms which are protected and can be computed in

the weakly coupled gauge theory. This means that they can be matched by studying the

large-j expansion of the one and two-loop expansion of the FRS equation, a remarkable

simplification. Thus, we analyze the large-j limit by analytical and numerical methods and

provide strong support for some of the predictions following from the computations in [33].

The plan of the work is the following. In section (2) we briefly recall a few basic facts

about the so-called fast long string limit of the folded string solution. In section (3) we give

a self-contained summary of the FRS equation. In section (4) we present the explicit two-

loop hole density equation in Bethe roots space. In section (5) and section (6) we describe

the analytical re-derivation of the one-loop large-j limit at next-to-next-to-leading order

and a few considerations about the similar analysis at two loops. Finally, in section (7) we

show our numerical results supporting at two loops the predictions of [33].

2. The large-j limit and the fast long string limit

In [21, 33], S. Frolov and A. A. Tseytlin compute the semiclassical expansion around the

rotating folded string configuration extending the analysis of [20, 34] and including the

string center of mass motion along a big circle of S5. Their solution depends on the

Lorentz spin M and SO(6) spin L to be identified with the quantum numbers of the sl(2)

twist operators. The large λ expansion of the energy takes the usual form

E =
√
λ E0

(
M√
λ
,
L√
λ

)

︸ ︷︷ ︸
E0

+E1

(
M√
λ
,
L√
λ

)
+ O

(
1√
λ

)
. (2.1)
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For an alternative derivation of the one-loop contribution see also [35]. The expan-

sion eq. (2.1) can be considered in the long string limit which is

long string both 1 ≪ M√
λ

and
L√
λ
≪ M√

λ
. (2.2)

This limit can be further refined in the two sub-cases defined by the additional conditions

slow long string
L√
λ
≪ log

M√
λ
, (2.3)

fast long string log
M√
λ
≪ L√

λ
. (2.4)

An interpolating regime between these two cases is obtained by fixing the parameter

x =

√
λ

π L
log

M

L
. (2.5)

The slow long string limit is reproduced for x ≫ 1, the fast string limit for x ≪ 1. The

expansion of the energy in this second limit reads [33] (see [36] for a recent analysis of E2

mainly at x≪ 1)

E0(x≪ 1) = M + L+
λ

2π2 L
log2 M

L
− λ2

8π4 L3
log4 M

L
+

λ3

16π6 L5
log6 M

L
+ · · ·

E1(x≪ 1) = − 4λ

3π3 L2
log3 M

L
+

4λ2

5π5 L4
log5 M

L
+

λ5/2

3π6 L5
log6 M

L
+ · · · . (2.6)

The above result is a string calculation based on the large λ assumption. However, as

discussed in [33, 37, 16], a general form of E interpolating between weak and strong

coupling is expected to take the form

E = M + L+ L
∑

n≥1

∑

m≥0

cnm(λ)λn

(
1

L
log

M

L

)2 n+m

. (2.7)

The coefficients cn,m(λ) have a regular expansion around λ = 0 and a strong coupling

expansion in inverse powers of
√
λ. Quite remarkably, some of them are protected and are

thus genuine constants independent on λ. This follows from the comparison between string

theory and gauge theory of the 1-loop and 2-loop leading and subleading corrections [38 –

43] to the thermodynamical limit of similar circular string solutions. In particular, this is

true for the coefficients

c10, c11, c12, c20, and c21, (2.8)

and we can write the very explicit expansion (eq. (1.15) of [33])

E = M + L

[
1 +

λ

L2
log2 M

L

(
c10 +

c11
L

log
M

L
+
c12
L2

log2 M

L
+ · · ·

)
+ (2.9)

+
λ2

L4
log4 M

L

(
c20 +

c21
L

log
M

L
+
c22(λ)

L2
log2 M

L
+ · · ·

)
+

+
λ3

L6
log6 M

L

(
c30(λ) +

c31(λ)

L
log

M

L
+
c32(λ)

L2
log2 M

L
+ · · ·

)]
+ · · · ,
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A comparison with the one-loop string energy gives (c1,2 would require E2 in the fast long

string limit)

c10 = +
1

2π2
, c20 = − 1

8π4
,

c11 = − 4

3π3
, c21 = +

4

5π5
. (2.10)

The value c30(0) is discussed in [33] and is obtained by consistency of the string result with

the universal dressing phase [33]. It should be c30(0) = 1
8 π6 .

Now, the crucial point is that we can take the generalized limit eq. (1.4) in the above

interpolating expansion eq. (2.9). Doing so and assuming the above values for the protected

coefficients we find the following prediction for the large-j behavior of the FRS generalized

scaling function

f (1)(j) =
8

j
− 64

3π

1

j2
+ · · · , (2.11)

f (2)(j) = −32

j3
+

1024

5π

1

j4
+ · · · , (2.12)

f (3)(j) =
512

j5
+ · · · . (2.13)

The two terms in eq. (2.11) have actually been already obtained in [24] by working out

the finite size corrections to the semiclassical expansion of the sl(2) invariant one-loop spin

chain. The other two expansions are a higher loop test of the AdS/CFT correspondence

and have not yet been computed in the gauge theory. We now discuss the confirmation of

eqs. (2.11), (2.12) in the context of the large-j FRS integral equation.

3. The FRS equation in brief

3.1 Setup

We consider sl(2) scaling operators of the form

O = Tr (DM ZL) + · · · , (3.1)

where D is a specific component of the covariant derivative and Z a scalar field of N = 4

SYM [44]. The omitted terms are analogous operators with the same number of derivatives

and scalar fields. They are required to form an eigenstate of the dilatation operator. As

usual, L is also identified with the twist, i.e. the classical dimension minus the Lorentz

spin, here equal to M .

The anomalous dimensions of scaling operators of the form eq. (3.1) can be organized in

irreducible multiplets of the sl(2) algebra and the top states fill a band, see for instance [1,

45]. We can split the scaling dimension ∆(g) separating out the classical dimension and

define the anomalous dimension γ(g) as

∆(g) = L+M + γ(g). (3.2)

– 6 –
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In terms of the energy E(g) of the sl(2) ⊂ psu(2, 2|4) long-range integrable spin chain [4],

we have

γ(g) = 2 g2 E(g). (3.3)

The quantity E(g) is the energy level of an integrable system. Therefore, it is computed

by solving Bethe Ansatz equations with suitable mode numbers identifying the relevant

state in the above band.

In the FRS limit eq. (1.4), the Bethe roots u of the minimal state in the band are

described by a continuous distribution with density ρm(u) supported in the region |u| ≥
c(g, j), where c is some function of g and j that we shall call gap in the following. The

label m in ρm(u) stands for magnons, which is the standard name for the excitations of the

integrable chain. Actually, the relevant quantity in the FRS limit is a specific contribution

to ρm(u) called σ(u) in [25] and representing a fluctuation component of the magnon density.

Remarkably, there is a dual description in terms of the complementary Bethe roots

called usually holes. In the FRS limit, the holes are also described by a continuous dis-

tribution with density ρh(u) ≡ ρ(u) supported in the complementary region |u| ≤ c(g, j).

The two dual descriptions are fully equivalent and can be connected by the simple relation

j ρ(u) =
2

π
− 8σ(u). (3.4)

The FRS equation is an all-order integral equation for the fluctuation density of magnons

σ(u). It can be turned into an integral equation for the hole density ρ(u). We shall show

that this latter equation is better suited for the large-j expansion, at least at the two loop

level at which we work.

3.2 The all-loop FRS equation

We need a few definitions in order to write down the FRS equation. They are fully discussed

in [25] and we summarize them here for completeness.

First, we define the BES kernel

K(t, t′) = K0(t, t
′) +K1(t, t

′) +Kd(t, t
′), (3.5)

where (Jn(t) is the n-th Bessel function)

K0(t, t
′) =

t J1(t)J0(t
′) − t′ J0(t)J1(t

′)

t2 − t′2
, (3.6)

K1(t, t
′) =

t′ J1(t)J0(t
′) − t J0(t)J1(t

′)

t2 − t′2
, (3.7)

Kd(t, t
′) = 8 g2

∫ ∞

0
dt′′K1(t, 2 g t

′′)
t′′

et′′ − 1
K0(2 g t

′′, t′). (3.8)

In this paper, we shall not need the dressing kernel Kd. Then, we define also the hole

kernel

Kh(t, t′; c) =
e

t
′−t

2

4π t

∫ c

−c
du cos(t u) cos(t′ u) = (3.9)

=
e

t
′−t

2

2π t

t cos(c t′) sin(c t) − t′ cos(c t) sin(c t′)

t2 − t′2
.

– 7 –
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Finally, we define the full kernel K as

K(t, t′) = g2K(2 g t, 2 g t′) +Kh(t, t′; c) − J0(2 g t)

t

sin c t′

2π t′
e

t
′

2 (3.10)

−4 g2

∫ ∞

0
dt′′ t′′K(2 g t, 2 g t′′)Kh(t′′, t′; c).

After these preliminary definitions we are ready to write the FRS equation which holds for

the Fourier transform of the (even) magnon fluctuation density σ(u)

σ̂(t) = e−
t

2

∫

R

du e−i t u σ(u) = 2 e−
t

2

∫ ∞

0
du cos(t u)σ(u). (3.11)

The all-loop FRS equation reads

σ̂(t) =
t

et − 1

(
K(t, 0) − 4

∫ ∞

0
dt′ K(t, t′) σ̂(t′)

)
. (3.12)

The j parameter is related to the gap parameter c by the relation

j =
4 c

π
− 16

π

∫ ∞

0
dt

sin c t

t
e

t

2 σ̂(t). (3.13)

The generalized scaling function f(g, j) has a rather complicated all-loop expression

in terms of the solution to the FRS equation

f(g, j) = 8 g2

[
1 − 8

∫ ∞

0
dt
J1(2gt)

2gt
tKh(t, 0; c) (3.14)

−8

∫ ∞

0
dt
J1(2gt)

2gt

(
σ(t) − 4 t

∫ ∞

0
dt′Kh(t, t′; c) σ̂(t′)

)]
.

As shown in [25], this can also be written more simply as

f(g, j) = j + 16 σ̂(0). (3.15)

4. The two-loop hole density equation in u-space

The FRS equation can be rewritten in u-space by Fourier analyzing eq. (3.12). We did

the analysis up to the two loop level. After some manipulations we arrive at the following

result where we use the notation of appendix (A) for the Ga functions

ρ(u) =
2

π j
− 1

2π
G1/2(u) +

∫ c

−c

dv

2π
G0(u− v) ρ(v) + (4.1)

+g2

[
− 1

2π
G′′

1/2(u) −
π

4 j cosh2(π u)
γ1[ρ

(0)]

]
+ O(g4).

In this equation, ρ(0) is the one-loop term in the weak coupling expansion of the hole density

ρ(u) = ρ(0)(u) + g2 ρ(1)(u) + O(g4), (4.2)

– 8 –
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and the functional γ1[ρ] is defined as

γ1[ρ] = 8 + 2 j

∫ c

−c

[
G1/2(u) + 2 γE

]
ρ(u) du. (4.3)

The generalized scaling function turns out to have the following explicit expression

f(g, j) = g2 γ1[ρ] (4.4)

+g4

[
8 j

(
−ζ3 −

π2

24 j
γ1[ρ

(0)]

)
− j

∫ c

−c

[
−G′′

1/2(u) + 4 ζ3

]
ρ(u) du

]
+ O(g6).

The one-loop terms in eqs. (4.1), (4.4) are of course identical to those already written

in [25]. As a check of the two-loops terms, one can compute the small j expansion

of eq. (4.1) and reproduces perfectly the results of [25] for the generalized scaling function

at two loops. Also, the two-loop expression of the gap in this regime is

c(g, j) = j

(
π

4
+ g2 π

3

4

)
+ (4.5)

+j2
(
−π

4
log 2 +

g2

4

(
−3π3 log 2 + 7π ζ3

))
+

+j3
(
π

4
log2 2 +

g2

192

(
−π7 + 240π3 log2 2 − 672π log 2 ζ3

))
+

+O(j4).

5. NNLO large-j expansion of the one-loop FRS equation

We now work out the next-to-next-to-leading (NNLO) large-j expansion of the one-loop

hole density equation and generalized scaling function. This is feasible and gives the value

of the leading term in eq. (2.11). This is a confirmation of the calculation described in [24]

obtained independently in the large-j FRS context. Also, we find additional information

on the density profile as well as on the dependence of the gap on j ≫ 1.

Using the notation of appendix (A), the one-loop hole density ρ(u) satisfies the equation

ρ(u) =
2

π j
− 1

2π
G1/2(u) +

1

2π

∫ c

−c
dv G0(u− v) ρ(v), (5.1)

with the normalization condition relating c and j

∫ c

−c
ρ(u) du = 1. (5.2)

The one loop contribution to the generalized scaling function is simply (ψ(z) = d
dz log Γ(z))

f (1)(j) = 8 + 2 j

∫ c

−c
du
[
G1/2(u) − 2ψ(1)

]
ρ(u). (5.3)

– 9 –
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5.1 Leading order

If j → ∞ we expect c → ∞. In this limit and using the normalization condition, we can

write the density equation as

ρ(u) =
1

2π

∫ ∞

−∞
dv
[
G0(u− v) −G1/2(u)

]
ρ(v). (5.4)

We now recall the useful integral representation

∫ ∞

0
dt
e

t

2 − cos(t y)

et − 1
cos(t x) =

1

4

(
G0(x− y) +G0(x+ y) − 2G1/2(x)

)
. (5.5)

Since ρ(u) = ρ(−u), we obtain

ρ(u) =
1

π

∫ ∞

−∞
dv

∫ ∞

0
dt
e

t

2 − cos(t v)

et − 1
cos(t u) ρ(v) (5.6)

Introducing the Fourier transform

ρ̃(t) =

∫ ∞

−∞
du ei t u ρ(u) =

∫ ∞

−∞
du cos(t u) ρ(u), (5.7)

ρ(u) =
1

2π

∫ ∞

−∞
dt e−i t u ρ̃(t) =

1

π

∫ ∞

0
dt cos(t u) ρ̃(t), (5.8)

we find

ρ(u) =
1

π

∫ ∞

0
dt
e

t

2 − ρ̃(t)

et − 1
cos(t u). (5.9)

This means that

ρ̃(t) =
e

t

2 − ρ̃(t)

et − 1
, −→ ρ̃(t) = e−

|t|
2 , (5.10)

where we do not restrict t to be positive. Hence, at leading order,

ρ(t) =
1

2π

1

u2 + 1
4

. (5.11)

The contribution to the scaling function is easily evaluated. We start from

G1/2(u) − 2ψ(1) = 2

∫ ∞

0
dt
e−t − e−

t

2 cos(t u)

1 − e−t
, (5.12)

and compute

∫ ∞

−∞
du

∫ ∞

0
dt
e−t − e−

t

2 cos(t u)

1 − e−t

1

2π

1

u2 + 1
4

=

∫ ∞

0
dt
e−t − e−

t

2 e−
t

2

1 − e−t
= 0. (5.13)

This shows that

f (1)(j) = 0 · j + O(1), (5.14)

c = O(j). (5.15)

and the dominant term linear in j cancels. The constant 8 contribution to f (1)(j) is

included in the O(1) terms.
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5.2 Next-to-leading order

The expansion at large j is not trivial and is better performed in u-space. Let us write

ρ(u) = ρ0(u) + δρ(u), ρ0(u) =
1

2π

1

u2 + 1
4

. (5.16)

The density equation can be written

δρ(u) =
2

π j
−
∫

|v|>c

dv

2π
G0(u− v) ρ0(v) +

∫ c

−c

dv

2π
G0(u− v) δρ(v). (5.17)

Rescaling u = c x, v = c y, the first integral can be uniformly expanded as
∫

|v|>c

dv

2π
G0(u− v) ρ0(v) =

log c

c π2
+

1

c
Φ(x) + O

(
1

c3

)
, (5.18)

where

Φ(x) =
(1 + x) log(1 + x) − (1 − x) log(1 − x)

2π2 x
. (5.19)

This suggest to set

δρ(u) =
1

c2
ρ1

(u
c

)
+ · · · . (5.20)

The density equation is then

2 c

π j
− log c

π2
− Φ

(u
c

)
+

1

c

∫ c

−c

dv

2π
G0(u− v) ρ1

(u
c

)
= 0. (5.21)

In terms of x, y it is

2 c

π j
− log c

π2
− Φ(x) +

∫ 1

−1

dy

2π
G0(c (x − y)) ρ1(y) = 0. (5.22)

Using

G0(c x) = 2 log c+ 2 log |x| + · · · , (5.23)

c = α j + · · · , (5.24)

with an undetermined constant α, we arrive at the singular problem

1

π

∫ 1

−1
dy log |x− y| ρ1(y) = Φ(x) − 2α

π
, (5.25)

∫ 1

−1
dy ρ1(y) =

1

π
. (5.26)

Notice that the normalization of ρ1 is also consistently predicted by

1 =

∫ c

−c
du

[
ρ0(u) +

1

c2
ρ1

(u
c

)]
+ O

(
1

c2

)
, (5.27)

which, evaluating the elementary integral involving ρ0, reads

1 = 1 +
1

c

[
− 1

π
+

∫ 1

−1
dx ρ1(x)

]
+ O

(
1

c2

)
, (5.28)
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and leads to eq. (5.26). The constant α can be determined dividing by
√

1 − x2 and

integrating. The key result

∫ 1

−1
dx

log |x− y|√
1 − x2

= −π log 2, (5.29)

together with the elementary integral

∫ 1

−1

dx√
1 − x2

= π, (5.30)

as well as ∫ 1

−1
dx

Φ(x)√
1 − x2

=
1

2
− log 2

π
, (5.31)

leads to

− log 2

π
=

1

2
− log 2

π
− 2α, −→ α =

1

4
. (5.32)

The solution of the integral equation with logarithmic kernel is standard. By taking a

derivative it is reduced to a finite Hilbert transform problem and the solution is [46]

ρ1(x) =
1

π2

1√
1 − x2

[
1 + −

∫ 1

−1
dy
√

1 − y2
πΦ′(y)

y − x

]
(5.33)

Evaluating the principal integral we get

ρ1(x) =
1

2π

1√
1 − x2

1

1 +
√

1 − x2
. (5.34)

The evaluation of the generalized scaling function can be done as follows. We want to

compute

∫ c

−c
du
[
G1/2(u) + 2 γE

] (
ρ0(u) +

1

c2
ρ1(u/c) + · · ·

)
(5.35)

=

∫ c

−c
du
[
G1/2(u) + 2 γE

]
ρ0(u) +

1

c

∫ 1

−1
dx
[
G1/2(c u) + 2 γE

]
ρ1(x) + · · ·

The first integral reads

F (c) =

∫ c

−c
du

ψ(1
2 + i u) + ψ(1

2 − i u) + 2 γE

2π (u2 + 1
4)

. (5.36)

We know that F (∞) = 0. Also,

F ′(c) =
ψ(1

2 + i c) + ψ(1
2 − i c) + 2 γE

π (c2 + 1
4 )

=
2

π c2
(log c+ γE) + O

(
1

c4

)
. (5.37)

Hence,

F (c) = − 2

π c
(1 + γE + log c) + O

(
1

c3

)
. (5.38)
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The second integral is for large c

∫ 1

−1
dx
[
G1/2(c u) + 2 γE

]
ρ1(x) = (5.39)

= 2 (γE + log c)

∫ 1

−1
dx ρ1(x) + 2

∫ 1

−1
dx log |x| ρ1(x) (5.40)

=
2 (γE + log c)

π
+ 2π

(
Φ(0) − 1

2π

)
=

2 (γE + log c)

π
+

2

π
− 1. (5.41)

Combining, we find
∫ c

−c
du
[
G1/2(u) + 2 γE

] (
ρ0(u) +

1

c2
ρ1(u/c) + · · ·

)
= −1

c
+ O

(
1

c3

)
. (5.42)

We conclude that

f (1)(j) = 8 + 0 · j +
2

α
+ O

(
1

c

)
= 0 · j + 0 + O

(
1

j

)
, (5.43)

c =
1

4
j + subleading. (5.44)

5.3 Next-to-next-to-leading order

Expanding further the density equation with the position

δρ(u) =
1

c2
ρ1

(u
c

)
+

1

c3
ρ2

(u
c

)
+ · · · , (5.45)

and using the results in appendix, we find

1

c2
ρ1(x) + O

(
1

c3

)
=

2

π j
− log c

π2 c
− 1

c
Φ(x) + O

(
1

c3

)
+ (5.46)

+c

∫ 1

−1

dy

π

(
log c+ log |x− y| + π

2 c
δ(x− y) + · · ·

)( 1

c2
ρ1(y) +

1

c3
ρ2(y) + · · ·

)

We assume the following general expansion of the gap

c =
j

4
+ β log j + γ + · · · , (5.47)

Hence

j = 4 c− 4β log c− 8β log 2 − 4 γ + · · · . (5.48)

and
2

π j
=

1

2π c
+

(
γ

2π
+
β log 2

π
+
β log c

2π

)
1

c2
+ · · · . (5.49)

The normalization condition

1 =

∫ c

−c
du

[
ρ0(u) +

1

c2
ρ1

(u
c

)
+

1

c3
ρ2

(u
c

)]
+ O

(
1

c4

)
, (5.50)

leads to ∫ 1

−1
dx ρ2(x) = 0. (5.51)
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The relevant terms in the density equation are thus

1

π

∫ 1

−1
dx log |x− y| ρ2(y) =

1

2
ρ1(x) −

γ

2π
− β log 2

π
− β log c

2π
. (5.52)

The appearance of the logarithmic term log c is tricky and can be understood as follows.

Dividing the above equation by
√

1 − x2 and integrating between −1 and 1 we find using

the normalization of ρ2

0 =
1

2

∫ 1

−1
dx

ρ1(x)√
1 − x2

− γ

2
− β log 2 − β log c

2
. (5.53)

On the other hand, the ρ1 function has the following behavior for |x| → 1

ρ1(x) ∼
1

2π
√

1 − x2
. (5.54)

Thus the integral in eq. (5.53) is singular

1

2

∫ 1

−1
dx

ρ1(x)√
1 − x2

=
1

4π

∫ 1

−1

dx

1 − x2
= ∞. (5.55)

The most singular and universal term is evaluated by integrating over [−1 + ε, 1 − ε] and

identifying ε ∼ 1/c. The logarithmic singularity is not ambiguous and reads

1

2

∫ 1

−1
dx

ρ1(x)√
1 − x2

=
log c

4π
+ less singular. (5.56)

This gives

β =
1

2π
. (5.57)

Apart from this, we shall not attempt to determine more precisely the function ρ2 nor the

constant γ which we shall not need in the end. Instead, we notice the important relation

1

π

∫ 1

−1
dx log |y| ρ2(y) =

1

2
ρ1(0) −

γ

2π
− β log 2

π
− β log c

2π
(5.58)

Computing the central value

ρ1(0) =
1

4π
, (5.59)

we thus obtain a crucial piece in the determination of the anomalous dimension at NNLO

∫ 1

−1
dx log |y| ρ2(y) =

1

8
− γ

2
− β log 2 − β log c

2
. (5.60)

If we look back to the expression determining the anomalous dimension, we see that all

the terms from ρ0 are already at the precision of NNLO. Also, the integral involving ρ1 is

∫ 1

−1
dx
[
G1/2(c x) + 2 γE

]
ρ1(x) (5.61)
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Due to the results in the appendix, the expansion of G1/2 has no δ-term and is also already

at the NNLO precision. The missing piece is (using again the normalization of ρ2)

∫ 1

−1
dx
[
G1/2(c x) + 2 γE

]
ρ2(x) (5.62)

= 2 (γE + log c)

∫ 1

−1
dx ρ2(x) + 2

∫ 1

−1
dx log |x| ρ2(x) (5.63)

= 2

∫ 1

−1
dx log |x| ρ2(x) =

1

4
− γ − 2β log 2 − β log c. (5.64)

Expanding in powers of j the combination

8 + 2 j

(
−1

c
+

1

c2

(
1

4
− γ − 2β log 2 − β log c

))
+ O

(
1

c3

)
, (5.65)

we find

f (1)(j) = 0 · j + 0 +
8

j
+ O

(
1

j2

)
, (5.66)

c =
1

4
j +

1

2π
log j + O(1). (5.67)

Notice also that eq. (5.66) is completely independent on both β and γ that, to be honest,

deserve a full determination at next order.

6. Large-j expansion of the two loops FRS equation: LO and remarks

The leading order calculation is very simple. We start from the surviving terms for j → ∞
and at this order we can set c = ∞. The equation to be solved is

ρ(u) =
1

2π

∫ ∞

−∞
dv
[
G0(u− v) −G1/2(u) − g2G′′

1/2(u)
]
ρ(v). (6.1)

A Fourier analysis completely similar to the one discussed for the one-loop case gives the

interesting result

ρ(u) =
2

π (1 + 4u2)
− 16

π

1 − 12u2

(1 + 4u2)3
g2 + O(g4). (6.2)

The integral of the two-loop correction vanishes and one easily proves the cancellation of

O(j) terms in the expression of f (2)(j). The NLO correction is also similar to the one-

loop case and one proves the cancellation of O(j) terms in the gap as well as cancellation

of O(1) terms in f (2)(j). We did not push the calculation further since we expect that

f (2)(j) = O(1/j3) which means that we need a N4LO calculation ! For this reason we shall

discuss in the next section a fully numerical determination of the two terms in eq. (2.12).

In perspective, this shows that beyond one-loop more sophisticated analytical tools are

necessary instead of the brute-force one-loop analysis.
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Figure 1: Convergence of the one-loop contribution f (1)(j) at j = 10 as the number of discretized

points N in u-space is increased.

7. Numerical study of the hole density equation

We look for a numerical determination of the one and two loop densities in eq. (4.2). We

need also to expand the gap

c = c(0) + g2 c(1) + O(g4). (7.1)

7.1 One loop

The numerical problem at one-loop is the solution of the non-singular integral equation

ρ(0)(u) =
2

π j
− 1

2π
G1/2(u) +

∫ c(0)

−c(0)

dv

2π
G0(u− v) ρ(0)(v) dv, (7.2)

1 =

∫ c(0)

−c(0)
ρ(0)(u) du. (7.3)

To this aim, we fix c(0) and discretize the u space evaluating the integral by the Boole’s

rule. The integral equation becomes a linear problem which can be solved very efficiently

and with high accuracy. The resulting density is plugged in the area constraint and c(0)

is determined by bisection. All the procedure must be repeated with smaller and smaller

lattice spacings until convergence is achieved. The good convergence is shown in figure (1)

at j = 10.
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Figure 2: One loop hole density from the numerical integration of the FRS equation at the two

values of the j parameter j = 10, 30 and j = 60. In the bottom-right panel, we show a detailed

view of the case j = 60 where one can appreciate the difference with respect to the lowest order

density.

As a first result, we show in figure (2) the one loop hole density from the numerical

integration of the FRS equation at the three values of the j parameter j = 10, 30 and

j = 60. The density is progressively better represented by the LO analytical expression

as j increases. One notices that the tails of the density, near the boundary of the gap

interval, show an interesting small rising. This is precisely captured by the NLO solution

as shown in figure (3). In that figure, we show the numerical density after subtraction of

the analytical LO contribution. For the j = 30, 60 we also superimpose the analytical NLO

solution. It is a rather good approximation, although the finite j data cannot show the

divergence on the boundary u = ±c. As a further check, we also show, in the j = 30 panel,

the numerical solution of the logarithmically singular equation eq. (5.25) that determines

ρ1. The agreement with eq. (5.34) is of course perfect.

The dependence of the gap on j is illustrated in figure (4) where we subtract out

the leading contribution j/4 in order to better display the subleading terms. Indeed, a

non-trivial reminder can be seen which is very well fitted by the heuristic logarithmic

term eq. (5.57) discussed previously.

Finally, we show in figure (5) the numerical computation of the generalized scaling

function at one-loop. The data are very well reproduced by the NLO prediction eq. (2.11).

We also show that the LO prediction is not enough to reproduce the numerics. This is
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Figure 3: We show ρ1 which is the one loop hole density from the numerical integration of the FRS

equation minus the analytical lowest order expression of the density. The remaining curves should

give at large j the NLO correction computed in the text. For j = 30, we superimpose the analytical

expression of ρ1 (Hilbert transform label) and the numerical solution of the logarithmically singular

integral equation that determines it (log. integral equation label). For j = 60 we show the numerical

data and the Hilbert transform result.

a confirmation of the NLO contribution. By the way, one can also make a general 2 or

3-parameter fit to predict a priori the two coefficients and of course they are matched with

good precision below the 0.1 % level.

7.2 Two loops

The two loop equation for ρ(1) and the constraint on c(1) are

ρ(1)(u) =

∫ c(0)

−c(0)

dv

2π
G0(u− v) ρ(1)(v) dv − 1

2π
G′′

1/2(u) −
π

4 j cosh2(π u)
γ1[ρ

(0)] +

+
1

2π
c(1) ρ(0)(c(0))

[
G0(u− c(0)) +G0(u+ c(0))

]
, (7.4)

2 ρ(0)(c(0)) c(1) +

∫ c(0)

−c(0)
ρ(1)(u) du = 0. (7.5)

By discretization, the first equation is a linear problem where we have to insert various

quantities computed in the solution of the one-loop problem. This must be done with a

fixed c(1) which is then evaluated by bisection to impose the second constraint.

The two-loop contribution to the density profile is illustrated in figure (6). Apart from

remarkably small corrections, the LO expression captures essentially the numerical data.

The gap is shown in figure (7) where we confirm that the two loop contribution starts

O(1/j). We have fitted the numerical results with a 3-parameter fit. The leading term is
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Figure 4: One loop gap as a function of j. We show the numerical data minus the leading order

contribution. We also superimpose a fit with the heuristic logarithmic contribution discussed in the

text plus an additional subleading constant.

very accurately 6/j. In the figure, we show the result of a 2-parameter fit with the leading

term fixed at that value.

Finally, in figure (8), we show the two loop generalized scaling function. As in the one-

loop case, one can predict the coefficients. The result is in perfect agreement with eq. (2.12).

This is best illustrated by superimposing the NLO curve which reproduces numerical data

very well. Again, one can try to see the accuracy of the LO term alone and the figure shows

that it is not enough. This means that our computation strongly suggest the validity of

the expansion eq. (2.12).

8. Conclusions

In this paper, we have exploited a very simple remark, i.e. the observation that the large-j

limit of the FRS equation can be used to capture the fast spinning long string limit of

AdS5 × S5 superstring perturbation theory. Indeed, in this limit, the string energy can be

expanded in inverse powers of j as

E = M + L+ f(λ, j) log M + O(M0), (8.1)

f(λ, j) =
∑

n≥1

Cn(λ) j−n. (8.2)
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Figure 5: One loop generalized scaling function. We show the numerical data and superimpose

two curves with the NLO and LO analytical expression.

In many respects, the coefficients Cn(λ) are similar to the more studied scaling function

and its generalizations which are obtained by expanding f(g, j) around j = 0. Indeed,

the various Cn(λ) are defined for all λ by the above relation and can be computed at any

λ, weak or strong, by taking the large-j limit of the FRS equation. As we explained, the

large-j limit is quite natural from the point of view of string perturbation theory where the

two regimes of slow and fast long string emerges quite symmetrically and are associated

with j ≪ 1 or j ≫ 1.

As a first attempt to study the large-j limit of the FRS equation, we have described

in this paper what can be learned in the weakly coupled gauge theory. This regime has

a non vanishing overlap with the string calculation since part of the Cn(λ) coefficients is

protected leading to a prediction from string theory valid also at small λ.

At one-loop in the gauge theory, we can match the result eq. (2.11). This is not a new

check since eq. (2.11) has already been obtained by working out the finite size corrections

to the integrable XXX−1/2 spin chain [24]. Nevertheless, this is an important check of

the approach and several interesting new details are uncovered. In particular, we have

obtained various results concerning the large-j Bethe roots density and gap dependence.

At two-loops in the gauge theory, we can match eq. (2.12). This is an interesting

check first proposed in [33] and never verified. We did not work it out in a fully analytical

way, but have shown that a numerical approach is feasible and strongly supports a perfect

agreement. In principle, an analogous study could be carried over to test the three loop
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order density.

result eq. (2.13).

Clearly, the most interesting development of our analysis is to compute the strong

coupling expansion of Cn(λ) from the FRS equation. It would be very interesting to

investigate whether the effective techniques developed in [19, 28] for j ≪ 1 can also be

applied to the large-j case.
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A. Technical results about the combinations ψ(a+ i x) + ψ(a− i x)

Let us consider the function (ψ(z) = d
dz log Γ(z))

Ga(x) = ψ(a+ i x) + ψ(a− i x), a, x ∈ R, and a > 0. (A.1)

The function Ga(x) is real. Due to a special reflection property of the ψ(z) function, one

has the remarkable identity

G1(x) = ψ(i x) + ψ(−i x). (A.2)
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Figure 7: Two loop gap. We show the numerical data and superimpose a reasonable 2-terms fit

including the leading order whose coefficient is very accurately reproduced by a would-be 3-terms

fit.

Hence, it will be convenient to extend the definition eq. (A.1) to the case a = 0 by under-

standing

G0(x) ≡ G1(x). (A.3)

From the integral representation

ψ(z) + γE =

∫ ∞

0
ds
e−s − e−z s

1 − e−s
, Re(z) > 0, (A.4)

we can obtain the remarkable definite integral

Ga(x) − 2 log |x| = −2

∫ ∞

0

(
e−a s

1 − e−s
− 1

s

)
cos(s x). (A.5)

This means that the following Fourier transform holds

F
{
Ga(x) − 2 log |x|

}
= −2π

(
e−a|t|

1 − e−|t|
− 1

|t|

)
. (A.6)

Also, using the above reflection identity, we have for a = 0

F
{
G0(x) − 2 log |x|

}
= −2π

(
1

e|t| − 1
− 1

|t|

)
. (A.7)
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Figure 8: Two loop generalized scaling function. We show the numerical data and superimpose

two curves with the NLO and LO analytical expression.

If we now want to compute the asymptotic expansion for c→ ∞ of the integral

I =

∫ 1

−1
dxGa(c x) ρ(x), (A.8)

we simply add and subtract a logarithm and obtain

I = 2 log c

∫ 1

−1
dx ρ(x) + 2

∫ 1

−1
dx log |x| ρ(x) +

∫ 1

−1
dx (Ga(c x) − log (c|x|)) ρ(x). (A.9)

The first term in the asymptotic expansion of the last integral is obtained by writing it

as the integral of the Fourier transforms of Ga(c x) − log (c|x|) and ρ and expanding the

above results. We can compactly write the result as the distributional identity

G0(c x) = 2 log c+ 2 log |x| + π

c
δ(x) + O

(
1

c2

)
, (A.10)

G 1
2
(c x) = 2 log c+ 2 log |x| + O

(
1

c2

)
. (A.11)

The δ-term in the a = 0 case is quite important for the discussion of the main text.
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[ISBN-10:0817640851] [ISBN-13:978-0817640859].

– 26 –

http://arxiv.org/abs/0805.4410
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB766%2C232
http://arxiv.org/abs/hep-th/0611269
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C7513
http://arxiv.org/abs/hep-th/9607056
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB785%2C1
http://arxiv.org/abs/0705.0890
http://arxiv.org/abs/0805.4615
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB629%2C102
http://arxiv.org/abs/hep-th/0509084
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB715%2C190
http://arxiv.org/abs/hep-th/0502173
http://jhep.sissa.it/stdsearch?paper=06%282005%29011
http://arxiv.org/abs/hep-th/0502188
http://jhep.sissa.it/stdsearch?paper=09%282005%29051
http://arxiv.org/abs/hep-th/0507189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB736%2C199
http://arxiv.org/abs/hep-th/0510194
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB735%2C127
http://arxiv.org/abs/hep-th/0509071
http://jhep.sissa.it/stdsearch?paper=11%282005%29031
http://arxiv.org/abs/hep-th/0510080
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB676%2C3
http://arxiv.org/abs/hep-th/0307015
http://jhep.sissa.it/stdsearch?paper=06%282008%29103
http://jhep.sissa.it/stdsearch?paper=06%282008%29103
http://arxiv.org/abs/0804.3711

